

**RELEVANT
GOLD**

TSXV:RGC
OTCQB:RGCCF

A BELT-SCALE GOLD OPPORTUNITY IN MINING-FRIENDLY WYOMING

CAUTIONARY STATEMENT

This presentation contains certain statements that constitute forward looking information within the meaning of applicable securities laws. These statements relate to future events of Relevant Gold Corp. ("Relevant" or "the Company"). Any statements that express or involve discussions with respect to predictions, expectations, beliefs, plans, projections, objectives, assumptions or future events or performance (often, but not always, using words or phrases such as "seek", "anticipate", "plan", "continue", "estimate", "expect", "forecast", "may", "will", "project", "predict", "potential", "targeting", "intend", "could", "might", "should", "believe", "outlook" and similar expressions) are not statements of historical fact and may be forward looking information. Forward looking information in this presentation includes, but is not limited to, statements with respect to successfully consolidating further land packages, Relevant's ability to raise sufficient capital to fund exploration programs and its obligations under property agreements, seek a listing on a recognized stock exchange, drilling plans, financing success, discovery and production of minerals, metal prices and currency exchange rates, timing of technical reports and drill results, corporate and technical objectives, permitting success and relationships with stakeholders.

Forward looking information involves known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any future results, performance or achievements expressed or implied by the forward-looking information. Such risks include, among others, the inherent risk of the mining industry; adverse economic and market developments; the risk that the Company will not be successful in completing additional acquisitions; risks relating to the estimation of mineral resources; the possibility that the Company's estimated burn rate may be higher than anticipated; risks of unexpected cost increases; risks of labour shortages; risks relating to exploration and development activities; risks relating to future prices of mineral resources; risks related to work site accidents, risks related to geological uncertainties and variations; risks related to government and community support of the company's projects; risks related to global pandemics and other risks related to the mining industry. The Company believes that the expectations reflected in such forward-looking information are reasonable, but no assurance can be given that these expectations will prove to be correct and such forward-looking information should not be unduly relied upon. These statements speak only as of the date of this presentation. The Company does not intend, and does not assume any obligation, to update any forward-looking information except as required by law.

This document does not constitute an offer to sell, or a solicitation of an offer to buy, securities of the Company in Canada, the United States or any other jurisdiction. Any such offer to sell or solicitation of an offer to buy the securities described herein or during the presentation will be made only pursuant to subscription documentation between the Company and prospective purchasers. Any such offering will be made in reliance upon exemptions from the prospectus and registration requirements under applicable securities laws, pursuant to a subscription agreement to be entered into by the Company and prospective investors.

The scientific and technical contents of this presentation have been approved by Mr. Brian C. Lentz, CPG, Chief Exploration Officer of the Company, who is a "Qualified Person" as defined by Canadian National Instrument 43-101 (Standards of Disclosure for Mineral Projects). Mr. Lentz is not independent of the Company.

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF

EXECUTIVE SUMMARY

- ❖ **Strong corporate structure and team**
- ❖ **Multi-camp high-grade discovery potential**
- ❖ **Exploration model validated**
- ❖ **Data pipeline established**
- ❖ **Tier-1 mining jurisdiction in Wyoming**
- ❖ **Tactical human capital infrastructure**
- ❖ **Ready for scale**

RELEVANT **GOLD**

WHAT MAKES A HIGH-QUALITY JUNIOR

And how RGC measures up

Strong Exploration Thesis & Systematic Strategy

Clear Archean Abitibi-analogue thesis backed by proprietary Wyoming database

>50,000 acres across Archean belts, with 75+ km of new shear mapped

Soils, rock geochem, & VTEM/ mag guiding drilling across four confirmed orogenic systems

Validation: Multiple camps and drill programs confirming the thesis

*Belt-scale science,
not one-off prospecting*

Strong Fiscal Diligence & Corporate Structure

Tight share structure with high insider and strategic ownership (Kinross, Bollinger, Management)

Capital deployed into the ground – 4 drill programs; geophysics & geochem across camps

Tier 1 Jurisdiction (Wyoming) with efficient permitting and low political risk

Validation Years of financial discipline matched with technical execution

*Disciplined capital;
Aligned & validated owners*

Top-Notch Team & Execution Track Record

Founders are career explorers with major discoveries and meaningful personal ownership

Board/technical advisors include recognized mine-finders and operators

Proven ability to plan, permit, and execute multi-camp programs on time and on budget

Validation: Years of systematic work successfully executed across Wyoming

*People who have done this before,
and are all-in here*

OPPORTUNITY OF SCALE

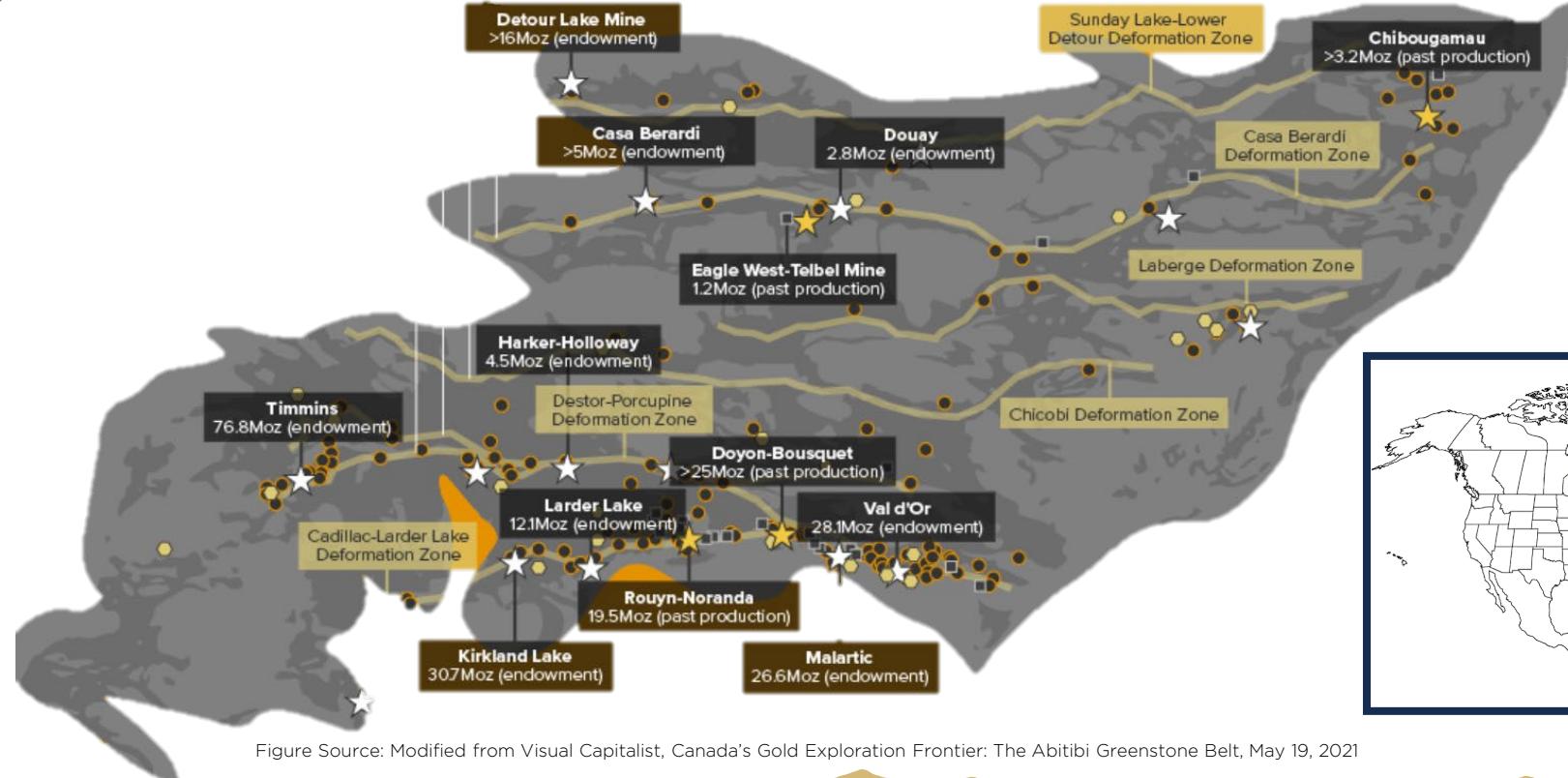
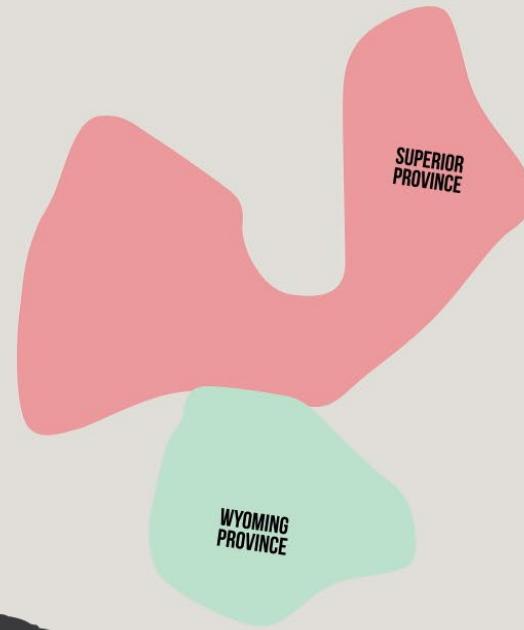


Figure Source: Modified from Visual Capitalist, Canada's Gold Exploration Frontier: The Abitibi Greenstone Belt, May 19, 2021

A UNIQUE DISCOVERY OPPORTUNITY IN THE AMERICAN ABITIBI



South Pass Gold Camp
Wyoming, USA

RELEVANT
GOLD

RELEVANT GOLD | CORPORATE PRESENTATION

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF

SUPPORTING LITERATURE

Blackwelder, E. 1926. Pre-Cambrian geology of the Medicine Bow Mountains, Geological Society of America Bulletin, 37, 615–658.

Bleeker, W. & Ernst, R.E. 2010. The Archean supercraton Superia: keys to the formation of early continents. *Precambrian Research*, 183(1), 1–26.

Chamberlain, K.R., Frost, C.D. & Frost, B.R. 2003. Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. *Canadian Journal of Earth Sciences*, 40(10), 1357–1374.

Chamberlain, K.R., Kilian, T.M., Evans, D.A.D. & Bleeker, W. 2015. Late Archean to Paleoproterozoic reconstructions of the Wyoming and Superior cratons. In: Li, Z.X., Evans, D.A.D. & Murphy, J.B. (eds), *Supercontinent Cycles Through Earth History*. Geological Society, London, Special Publications, 424, 153–170.

Dahl, P. S., Holm, D. K., Gardner, E. T., Hubacher, F. A. & Foland, K. A. 1999. New constraints on the timing of Early Proterozoic tectonism in the Black Hills (South Dakota), with implications for docking of the Wyoming province with Laurentia. *Geological Society of America Bulletin*, 111, 1335–1349.

Ding, X., Evans, D.A.D., Kilian, T.M., Mitrovica, J.X., Wu, L., Zhao, J., Ren, Z. & Yu, H. 2024. A new 2.48 Ga paleomagnetic pole from Wyoming constrains the assembly of the supercraton Superia. *Nature Communications*, 15, 12345.

Ernst, R.E. & Bleeker, W. 2010. Large igneous provinces (LIPs), giant dike swarms, and mantle plumes: significance for breaking up supercontinents and creating continents. In: *When Did Plate Tectonics Begin on Planet Earth?* (GSA Special Paper 440), 437–461. Geological Society of America.

Frost, C.D., and Frost, B.R., 1993. The Archean history of the Wyoming Province. *in* *Geology of Wyoming*. Edited by A.W. Snook, J.R. Steidtmann, and S.M. Roberts. Geological Survey of Wyoming, Memoir No. 5, pp. 58–76.

Grace, R.L.B., Chamberlain, K.R., Frost, B.R., and Frost, C.D. Frost, 2006, Tectonic histories of the Paleo- to Mesoproterozoic Sacawee block and Neoarchean Oregon Trail structural belt of the south-central Wyoming Province, *in* *The Wyoming Province: a distinctive Archean craton in Laurentian North America*, Can. J. Earth Sci. 43: 1445-1466.

Graff, P. 1979, A review of the stratigraphy and uranium potential of early Proterozoic (Precambrian X) metasediments in the Sierra Madre, Wyoming. *Rocky Mountain Geology*, 17, 149–157.

Harlan, S.S., Geissman, J.W., and Premo, W.R., 2003, Paleomagnetism and geochronology of an Early Proterozoic quartz diorite in the southern Wind River Range, Wyoming, USA, *Tectonophysics*, 362, pp. 105-122.

Houston, R. S. 1993. Late Archean and early Proterozoic geology of southeastern Wyoming. *Geology of Wyoming: Geological Survey of Wyoming Memoir*, 5, 78–116.

Kilian, T.M., Bleeker, W., Chamberlain, K., Evans, D.A.D., and Cousen, B., 2016, Paleomagnetism, geochronology and geochemistry of the Paleoproterozoic Rabbit Creek and Powder River dyke swarms: implications for Wyoming in supercraton Superia *in* Li, Z. X., Evans, D. A. D. & Murphy, J. B. (eds) 2016. *Supercontinent Cycles Through Earth History*, Geological Society, London, Special Publications, 424, 15–45.

Mammone, V., Gumsley, A.P., Söderlund, U., Chamberlain, K.R., Eglinger, A., Zeh, A. & Ernst, R.E. 2022. Testing the early Paleoproterozoic connection of the Superior and Wyoming cratons with geochronology and geochemistry. *Precambrian Research*, 379, 106807.

Mueller, P. A. & Burger, H. R. et al. 2005, Paleoproterozoic metamorphism in the Northern Wyoming Province: implications for the assembly of Laurentia. *The Journal of Geology*, 113, 169–179.

Mueller, P. A., Heatherington, A. L., Kelly, D. M., Wooden, J. L. & Mogk, D. W. 2002, Paleoproterozoic crust within the Great Falls tectonic zone: implications for the assembly of southern Laurentia. *Geology*, 30, 127–130.

Roscoe, S. M. 1969, Huronian rocks and uraniferous conglomerates in the Canadian shield. *Geological Survey of Canada, Ottawa, Papers*, 68–40, 205.

Roscoe, S.M. & Card, K. D. 1993, The reappearance of the Huronian in Wyoming: rifting and drifting of ancient continents. *Canadian Journal of Earth Sciences*, 30, 2475–2480.

Spall, H., 1971, Paleomagnetism and K-Ar age of mafic dikes from the Wind River Range, Wyoming: *Geological Society of America Bulletin*, v.82, p.2457-2472.

St-Onge, M. R., Searle, M. P. & Wodicka, N. 2006, Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia: structural and thermal characteristics of the lower and upper plates. *Tectonics*, 25, TC4006.

Young, G. M. 1970. An extensive early Proterozoic glaciation in North America? *Palaeogeography, Palaeoclimatology, Palaeoecology*, 7, 85–101.

Young, G. M., Long, D. G. F., Fedo, C.M. & Nesbitt, H. W. 2001. Paleoproterozoic Huronian basin: product of a Wilson cycle punctuated by glaciations and a meteorite impact. *Sedimentary Geology*, 141–142, 233–254.

FINANCIAL SNAPSHOT

CASH ON HAND:
~\$3.5M CAD*

*as of January 2026

BURN RATE:
\$120K / month

FINDERS FEES PAID:
\$249K*
(since 2020)

**SIMPLE COST OF
CAPITAL:**
<1.0%

TOTAL CAPITAL RAISED:
\$26.7M
(since 2020)

**FY24 USE OF
PROCEEDS:**
<17.5%
G&A
>68.7%
exploration/evaluation

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF

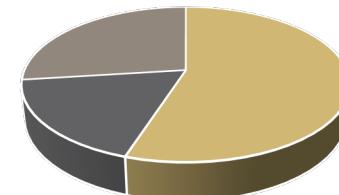
CORPORATE STRUCTURE

MARKET SUMMARY: (as of 02/02/2025)

Market Capitalization:	~\$60M
Avg. Volume:	~75K+ shares per day
52 week high/low:	\$0.51/\$0.215

SHARE BREAKDOWN:

Issued and Outstanding:	118,918,961
Reserved for Issuance:	14,937,788*
Fully Diluted:	133,856,749


* Includes:

Management/Board Options:	3,750,000 @ \$0.35	Expire 2027	\$1,312,500
Management/Board Options:	3,400,000 @ \$0.34	Expire 2030	\$1,156,000
Warrants:	7,787,788 @ \$0.35	Expire 2026	\$2,725,725

Public Float: 26.5% (>31M free trading shares)

MAJOR SHAREHOLDERS: (as of 10/16/2025 warrant execution)

- + Management (>21.99%)
- + Kinross Gold
- + Mr. William Guest Bollinger
- + Mr. Rob McEwen
- + Ultra High Net Worth Individuals
- + Retail Investors

Approximate Ownership Breakdown

Management and Insiders
Major Holders
Retail Investors

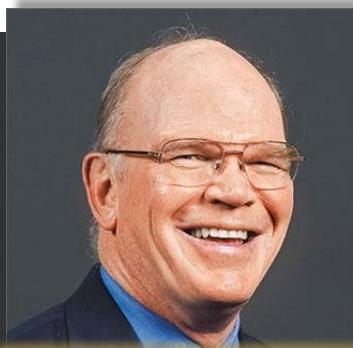
TRADING PROFILE

RGC SHARE PERFORMANCE – PREVIOUS 12 MONTHS

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF

MEET THE TEAM

BOARD OF DIRECTORS


INDEPENDENT BOARD CHAIR

Sarah Weber

20+ Years Experience
P. Geo / MBA

CEO, C3 Alliance Corp.

INDEPENDENT DIRECTOR

Dr. Peter Megaw, PhD.

40+ Years Experience
PhD, Economic Geology

Cofounder, MAG Silver Corp.

INDEPENDENT DIRECTOR

Ronald L. Parratt

40+ Years Experience
M.Sc. Economic Geology

Cofounder, Auex Ventures, Inc.

DIRECTOR, CEO

Rob Bergmann

15+ Years Experience
B.Sc. Geology

Founder, Relevant Gold Corp.

DIRECTOR, CXO

Brian Lentz

15+ Years Experience
B.Sc. Geology / P. Geo

Founder, Relevant Gold Corp.

MANAGEMENT

Mahesh Liyanage
RGC CFO

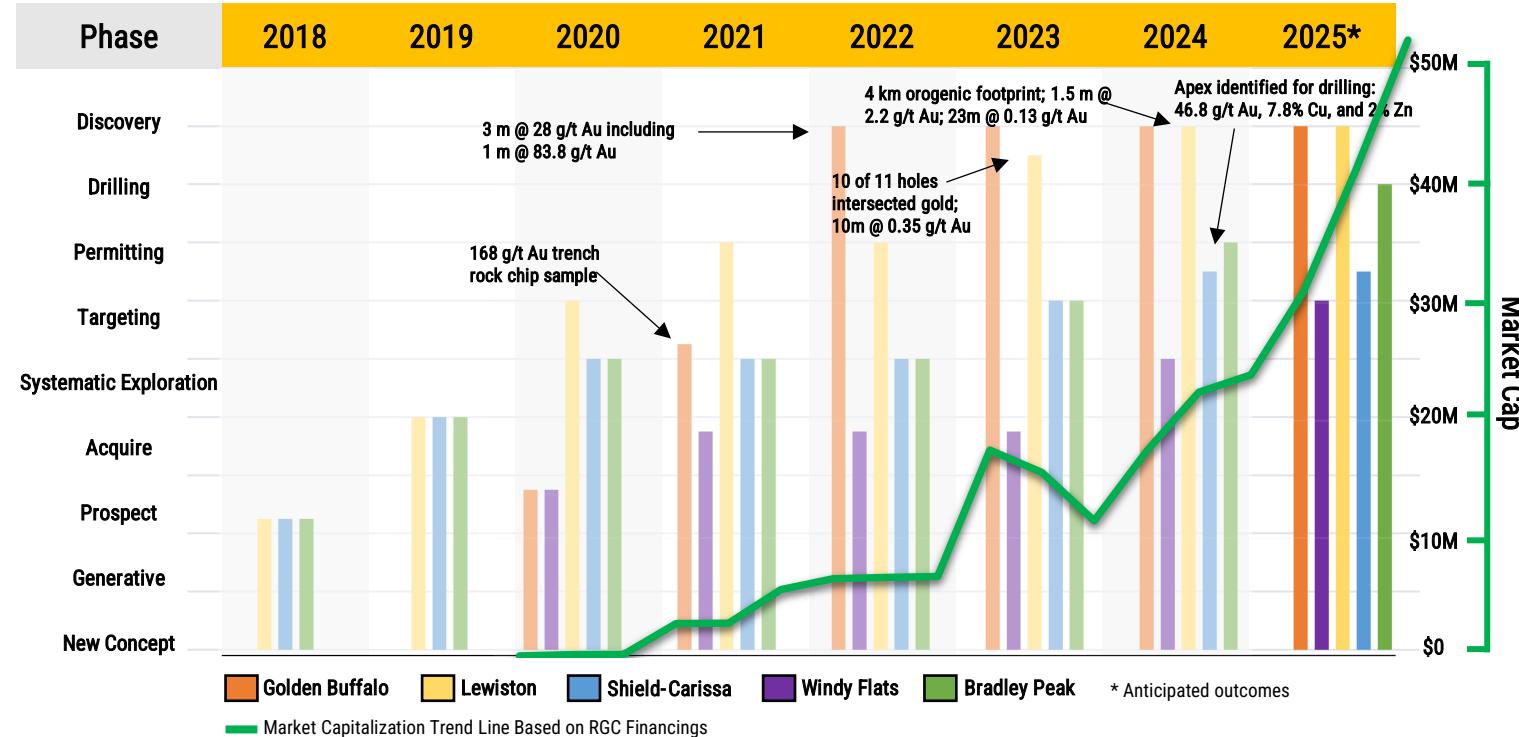
Kristopher Jensen
VP Corporate Comms.

Jerome Hutchison
Community Advisor

Jacob Tyra
Operations Manager

Dr. Dean Peterson, PhD
Technical Advisor

Dr. Thomas Campbell, PhD
Technical Advisor


Dr. Kevin Chamberlain, PhD
Technical Advisor

FULL BIOS CAN BE FOUND AT RELEVANTGOLDCORP.COM

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF

SYSTEMATIC EXPLORATION = VALUE CREATION

UNLOCKING A NEW BELT

From Concept to Multi-Camp Orogenic Discovery Engine

THESIS & DATABASE 2017-18

LAND & RECON 2018-21

SYSTEMATIC WORK 2019-Present

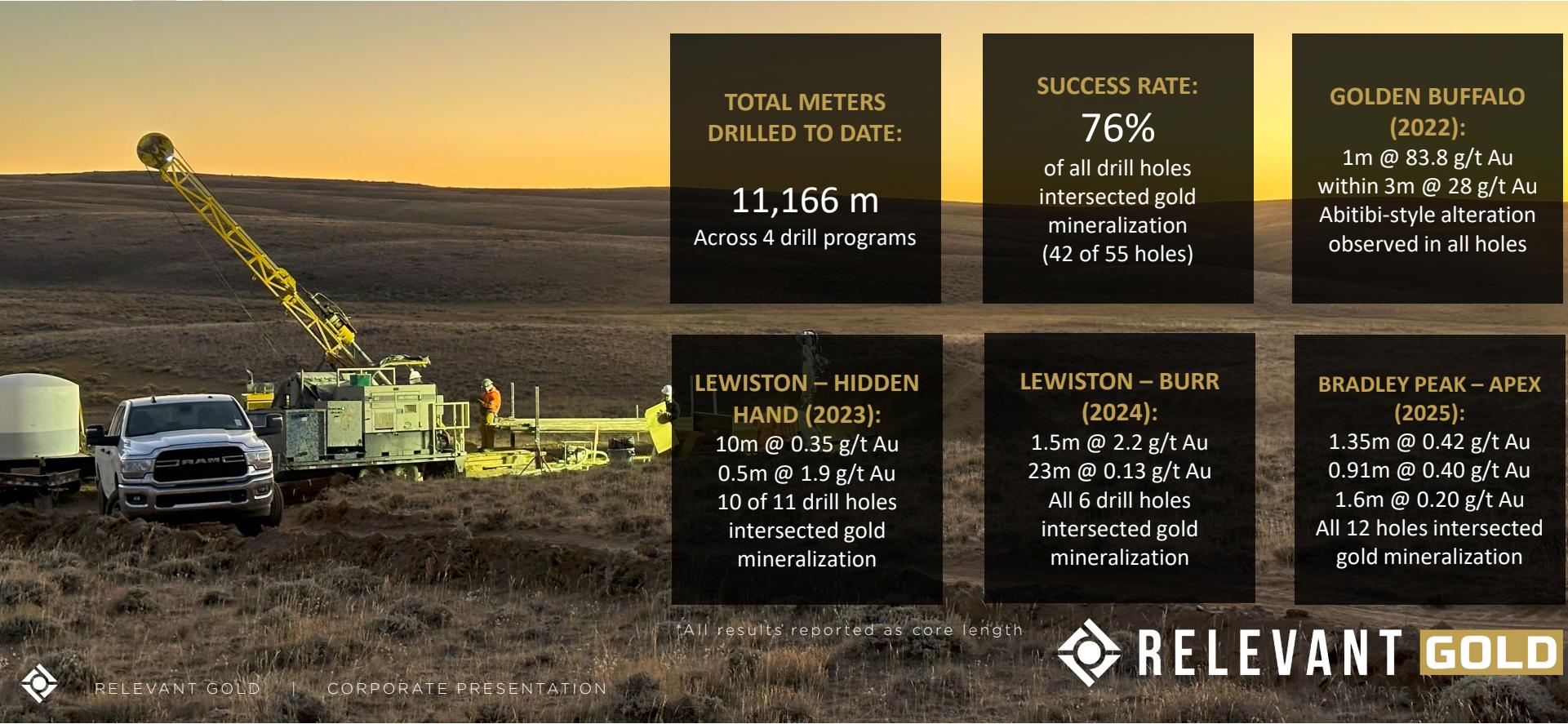
FIRST PASS DRILLING 2022-2025

DISCOVERY DRILLING 2026-2027

Built Archean
thesis + proprietary
Wyoming database

Assembled >50K acres
Across 2
Archean belts

Identified 17 high-
grade targets, 50+
km of new shear


Orogenic gold
systems confirmed
by 4 drill programs,
~11K m of core

Targeted drilling at
Apex, Lewiston,
Golden Buffalo, +
pipeline

DRILLING DOWN – OUR RESULTS

TOTAL METERS DRILLED TO DATE:
11,166 m
Across 4 drill programs

SUCCESS RATE:
76%
of all drill holes intersected gold mineralization (42 of 55 holes)

GOLDEN BUFFALO (2022):
1m @ 83.8 g/t Au within 3m @ 28 g/t Au
Abitibi-style alteration observed in all holes

LEWISTON – HIDDEN HAND (2023):
10m @ 0.35 g/t Au
0.5m @ 1.9 g/t Au
10 of 11 drill holes intersected gold mineralization

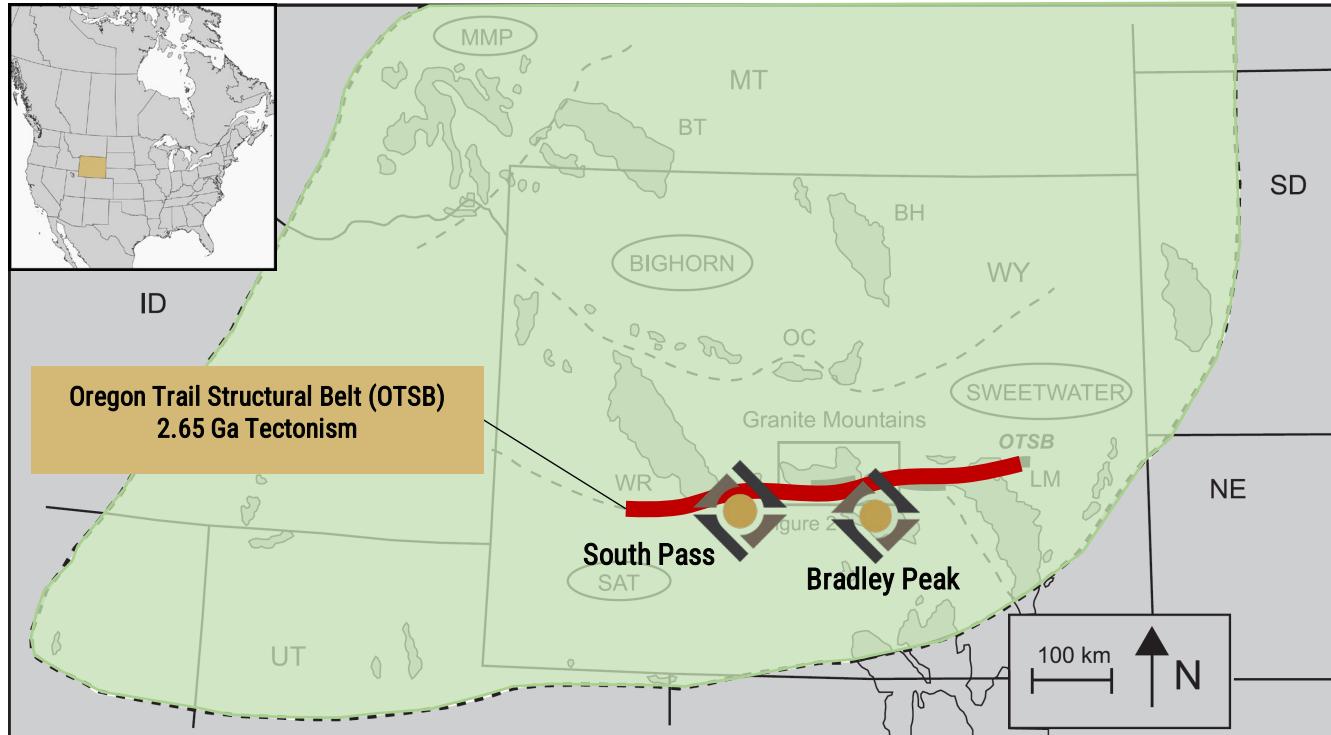
LEWISTON – BURR (2024):
1.5m @ 2.2 g/t Au
23m @ 0.13 g/t Au
All 6 drill holes intersected gold mineralization

BRADLEY PEAK – APEX (2025):
1.35m @ 0.42 g/t Au
0.91m @ 0.40 g/t Au
1.6m @ 0.20 g/t Au
All 12 holes intersected gold mineralization

*All results reported as core length

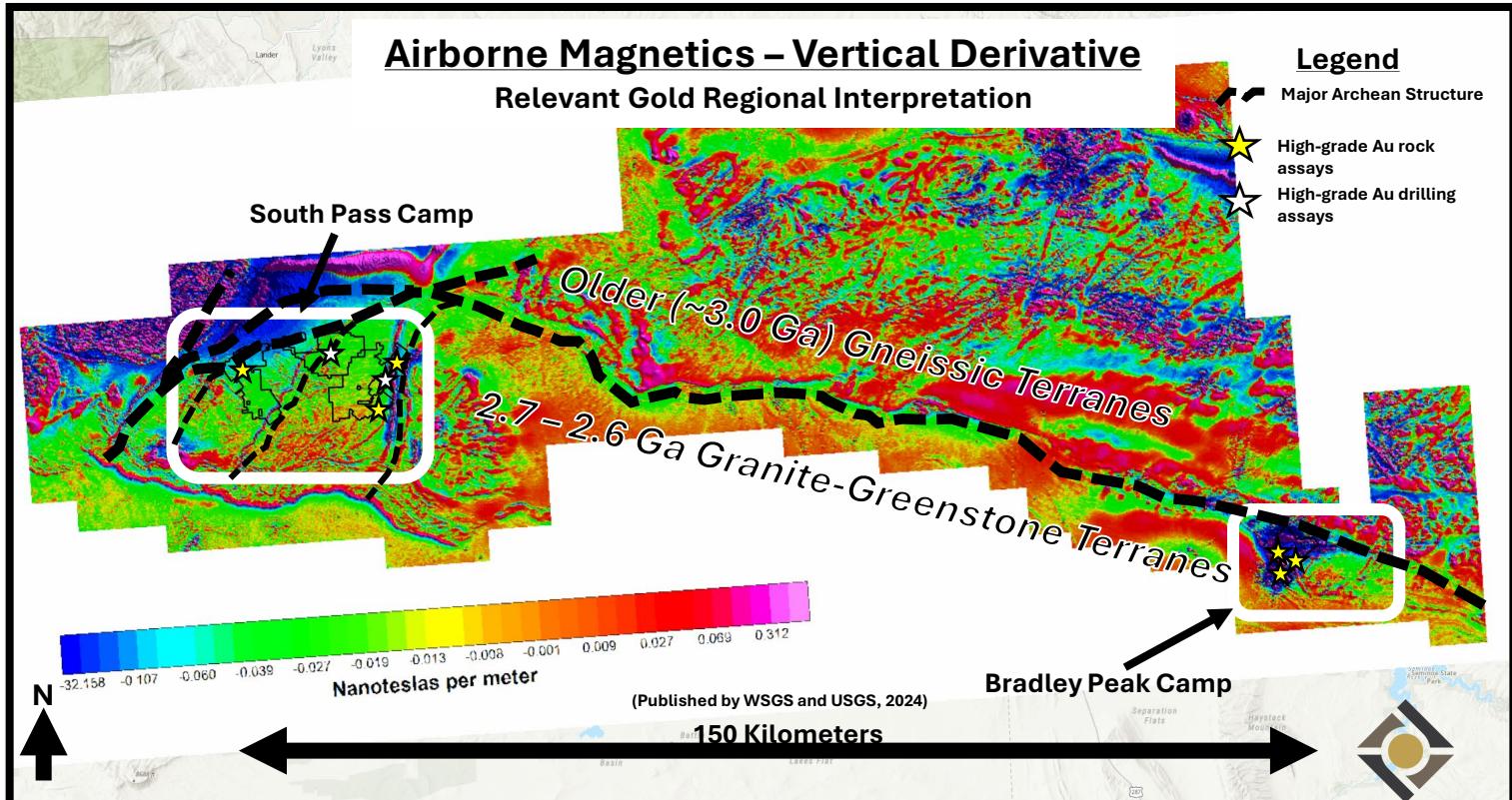
LOOKING AHEAD

12 - 24 month milestones towards discovery and definition


- ❖ Integrated 3D targeting across South Pass & Bradley Peak (VTEM, mag, geochem, drilling)
- ❖ Cross-camp ranking to lock priority drill targets 2026–27 exploration roadmap
- ❖ Permit upgrades and expansions
- ❖ Phase 2 and follow-up drilling at Apex/BPEX, Lewiston & Golden Buffalo
- ❖ Regional target refinement via mapping, sampling, and advanced geophysics.
- ❖ First-pass drilling at Shield-Carissa as warranted;
- ❖ Advance best system toward resource drilling
- ❖ Capital discipline: develop treasury strength and maintain strong shareholder base

PORTFOLIO AT A GLANCE |

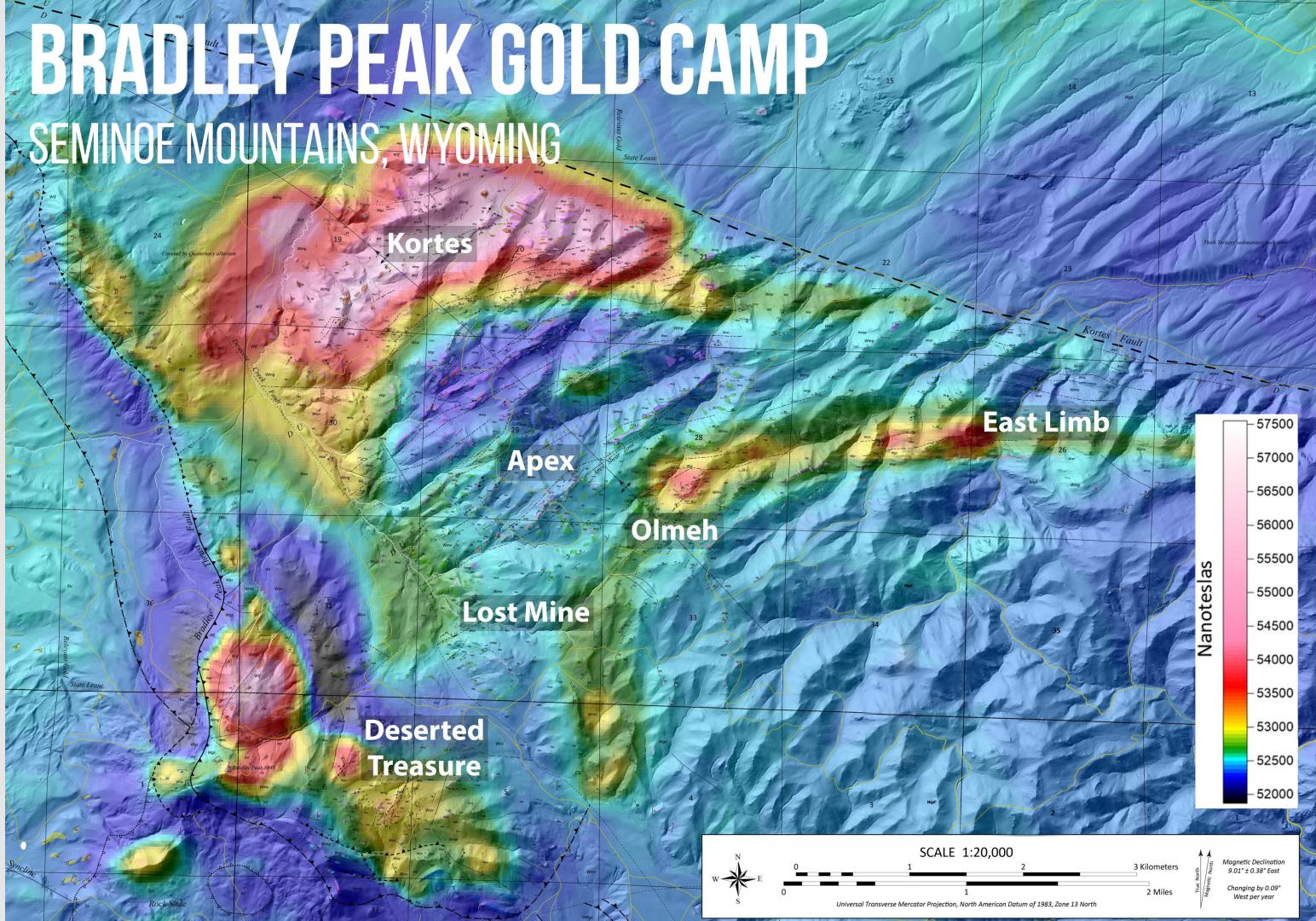
2 GOLD CAMPS, 5 DISTRICT-SCALE PROJECTS,
17 HIGH-GRADE TARGETS


*Figure modified from Chamberlain et. al. 2006

RELEVANT GOLD

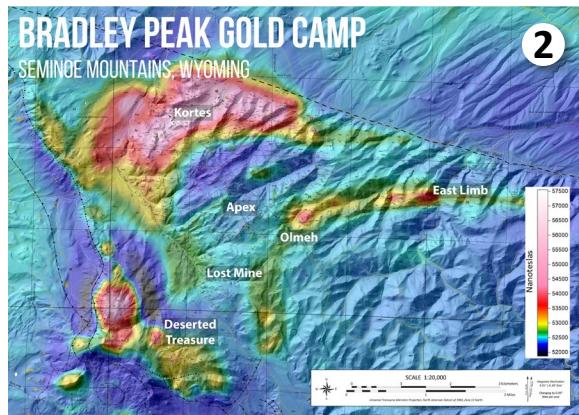
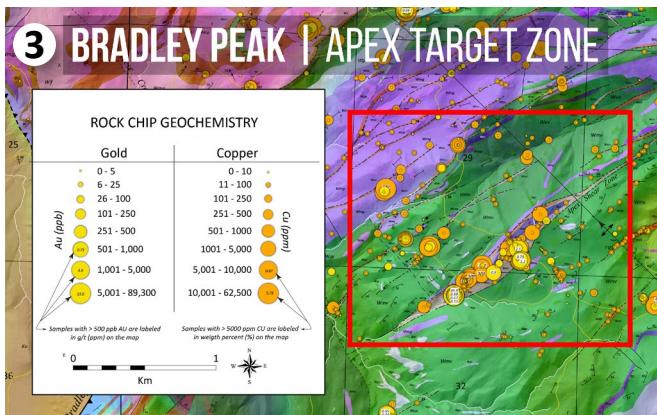
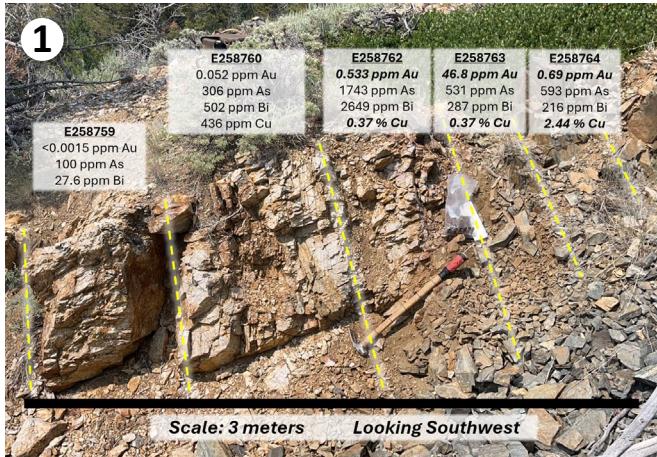
| CORPORATE PRESENTATION

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF

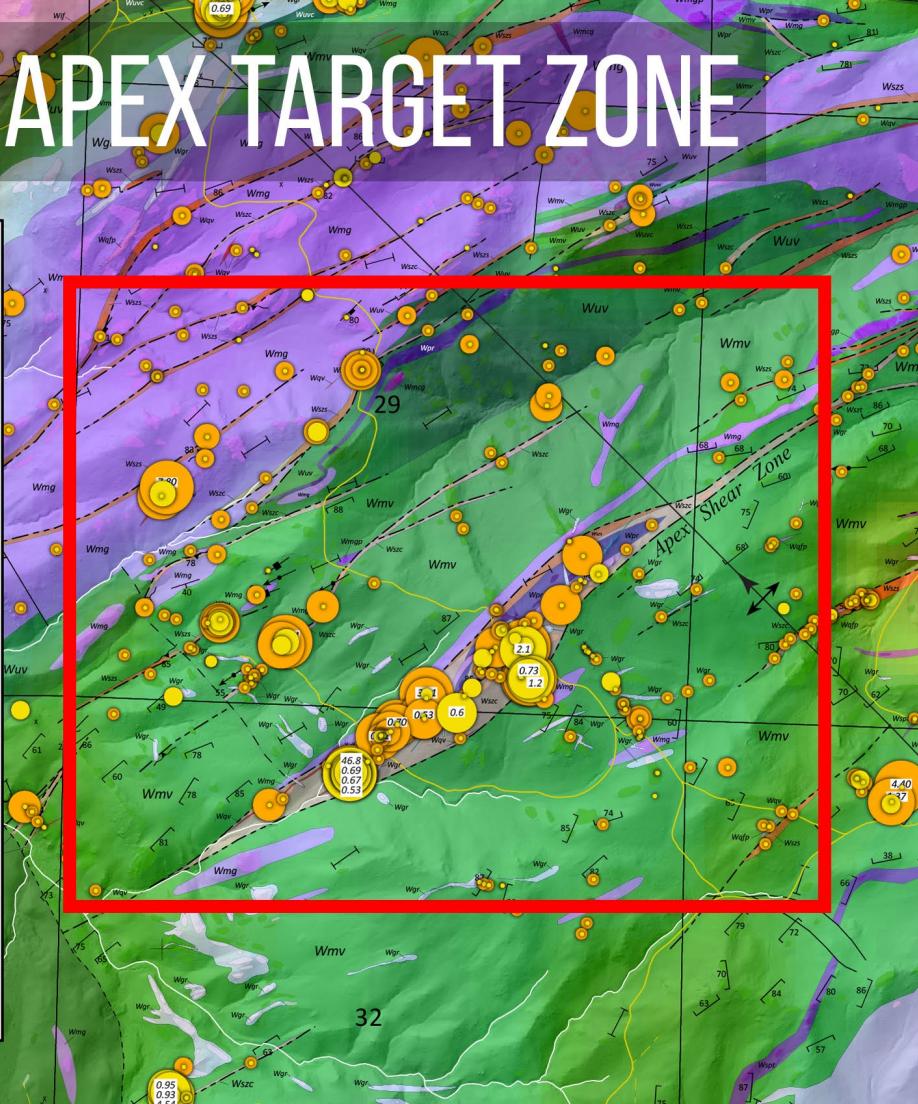
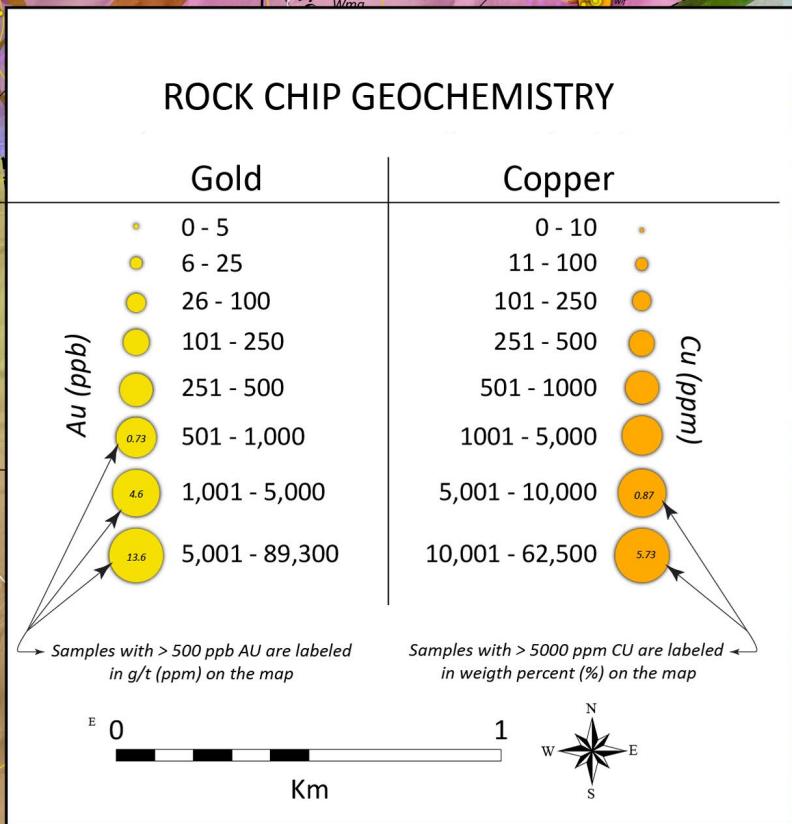

In 2024 the Wyoming State Geological Survey released airborne magnetics survey data at no cost to RGC shareholders. Importantly, this data highlighted the connection of South Pass to Bradley Peak along a ~200+ km structural corridor. The survey also revealed a ~100 km² geophysical anomaly at Bradley Peak, coincident with our high-grade surface samples.

BRADLEY PEAK GOLD CAMP

SEMINOE MOUNTAINS, WYOMING

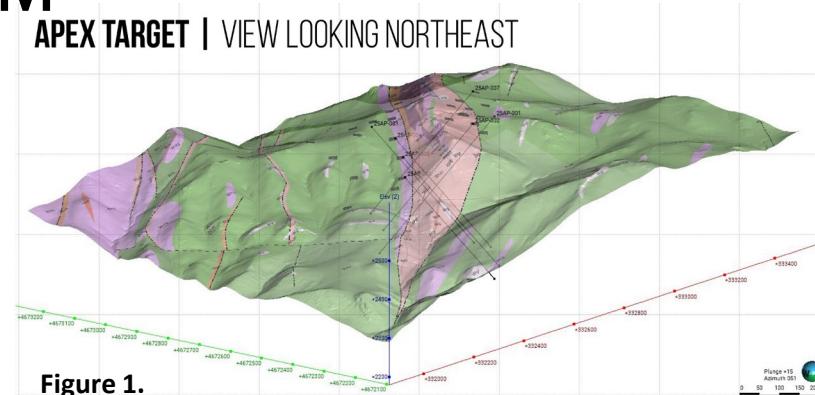
WHY WE LIKE APEX



HIGH-GRADE, POLY-METALLIC TARGET IN THE HEART OF BRADLEY PEAK

- 1 2024 rock chip sampling at Apex returned multiple >1 g/t Au results, including standout grades up to **46.8 g/t Au, 7.8% Cu, 2% Zn** in outcrop.
- 2 2024 airborne geophysics data depicts a massive **100+ km²** fold hinge anomaly centered over Apex.
- 3 >**2.5 km** trend of mineralized structure at Apex. Geology at Apex features a complex array of sheared mafic and ultramafic rocks cut by stockwork quartz veining and widespread alteration—**hallmarks of large-scale orogenic gold systems**.

BRADLEY PEAK | APEX TARGET ZONE

ROCK CHIP GEOCHEMISTRY


APEX DRILL PROGRAM

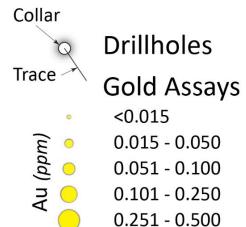
APEX TARGET | VIEW LOOKING NORTHEAST

APEX DRILL PROGRAM

- 5,102 m of HQ-sized, oriented diamond drilling
- 12 holes drilled; average depth of 390 m, with a range of 209 m to 858 m
- Drill program sought to:
 - Confirm the vertical continuation at depth of favorable surface geology and structures.
 - Evaluate the hanging wall and footwall contacts.
 - Identify the alteration (progressions, continuity, profiles, rock types, structures, mineralization, etc).
 - Test the continuation, quantity, size and scale of quartz veining at depth.
 - Classify the presence of high-grade gold and copper at depth, along with vector element geochemistry, to understand the location and potential of ore shoots.

Figure 1. Three-dimensional (3D) Leapfrog model of some drill hole plan options with surface geology draped over high resolution LiDAR. Actual drill holes will be determined throughout the program based on the geology and data observed. **Figure 2:** Drilling has commenced at the Apex Target in the Bradley Peak Gold Camp.

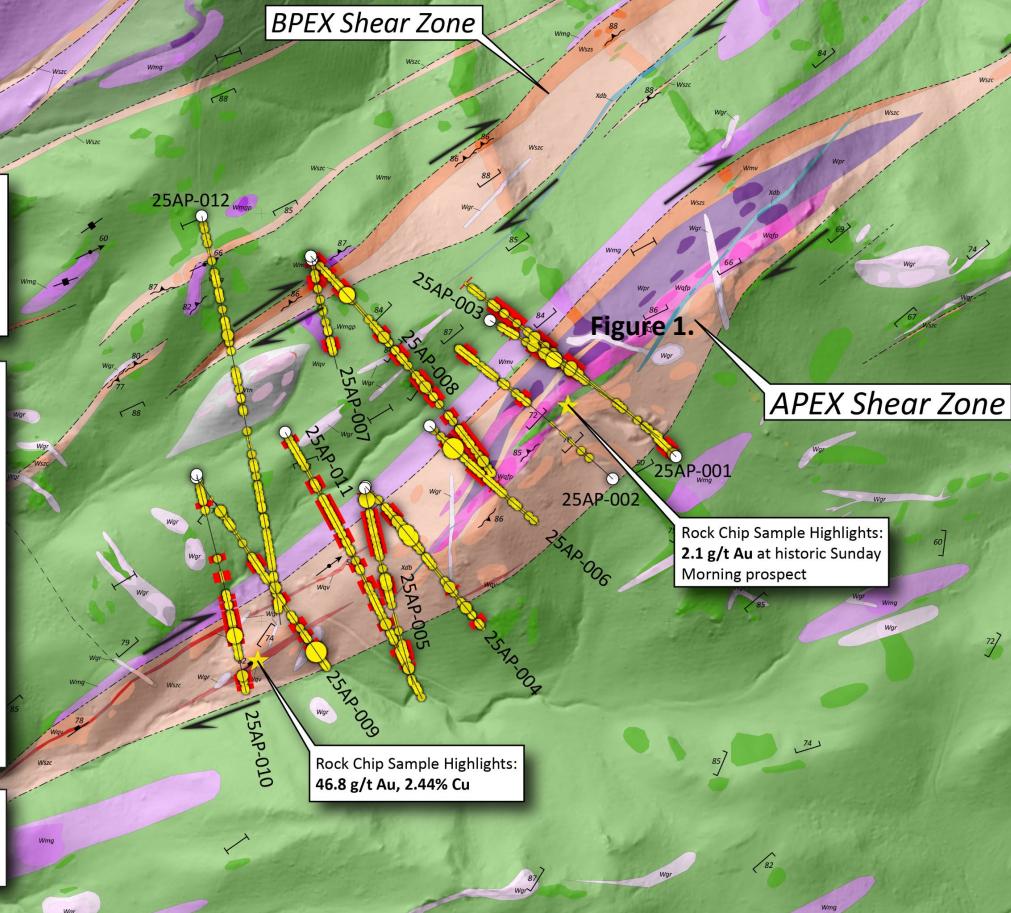
Figure 1.

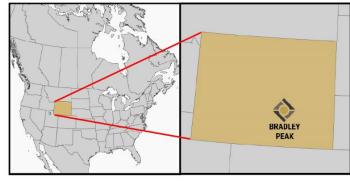

Figure 2.

APEX TARGET 2025 DRILL RESULTS

Program Summary

- 5,102 m program; 12 holes
- Oriented HQ diamond drilling
- ~150–200 m hole spacing
- Tested ~ 600 m strike, ~400 m depth


Drilling Legend


0 100 200 300

Meters

UTM Nad 83, Zone 13 North

Project Location

Geologic Legend

Proterozoic

Diabase dikes

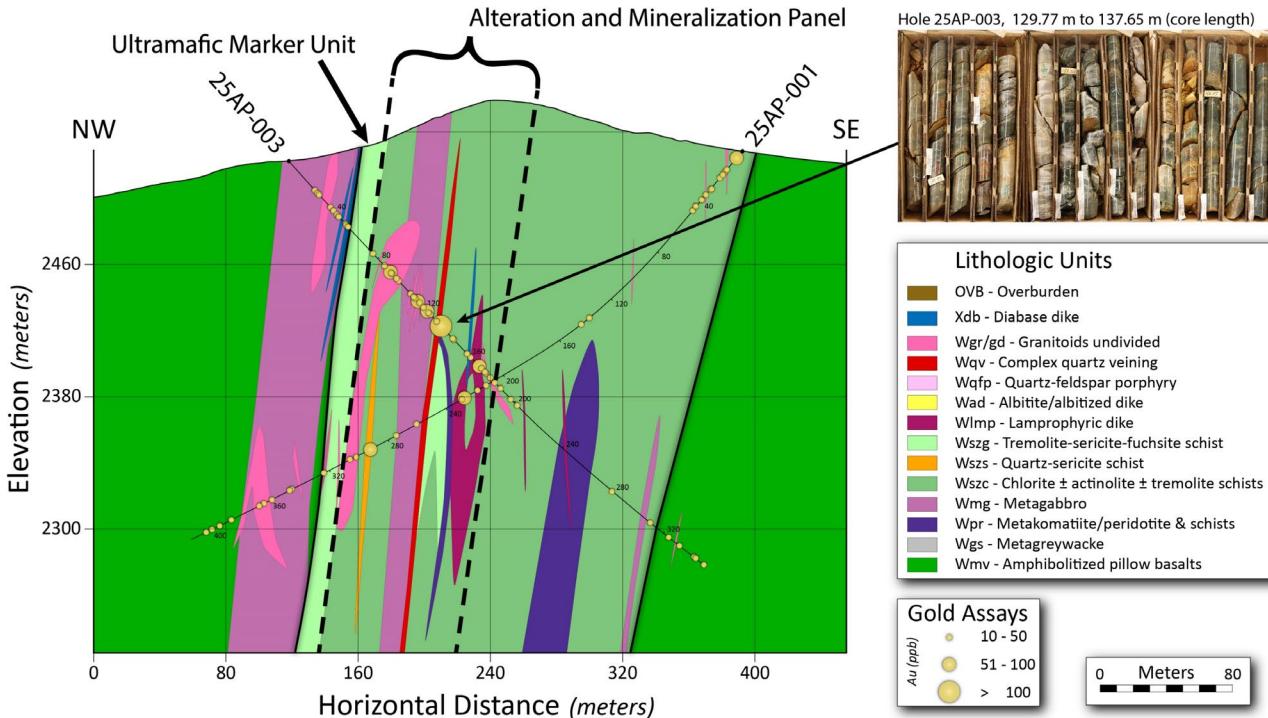
Archean

- Granitic dikes/plugs
- Auriferous quartz veins
- Quartz-feldspar porphyry
- Sericite-fuchsite schists
- Chlorite-actinolite schists
- Peridotite and serpentinites
- Gabbroic intrusions
- Metabasalts

Planar Features

- Foliation (inclined, vertical)
- Shearing (inclined, vertical)

Linear Features


- Lineations (mineral,fold axis)

Fault

Shear zone

APEX TARGET 2025 DRILL RESULTS

APEX DRILL PROGRAM

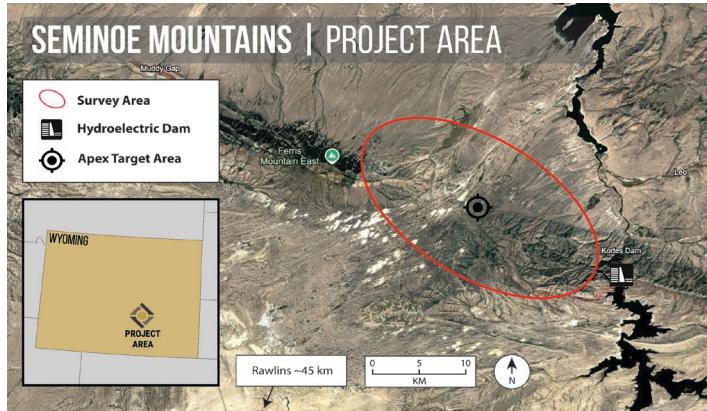
- 5,102 m of drilling, 12 holes
- All holes intersected anomalous gold
- Strong alteration + pathfinder halo
- Parallel BPEX shear confirmed
- System open along strike + depth
- Early-stage vectors defined
- Ore shoot targeting in 2026

INTERCEPTS:

- 0.42 g/t Au over 1.35 m
- 0.40 g/t Au over 0.91 m
- 0.23 g/t Au over 0.56 m
- 0.22 g/t Au and 0.19% Cu over 0.43 m
- 0.20 g/t Au over 1.60 m

GRANT-FUNDED EXPLORATION

Strategic Support from Wyoming


- Awarded a **\$226,533 matching grant** from the Wyoming Energy Matching Funds (EMF) program.
- Grant supports up to 50% of the cost for a **helicopter-borne Time-Domain Electromagnetic (TEM) survey** at Bradley Peak.

Cutting-Edge Geophysical Technology

- TEM survey will map conductivity and resistivity up to 500 m depth—crucial for detecting geophysical signatures related to gold, copper, nickel, zinc, and other critical minerals.
- The Seminoe Mountains share **similarities with Canada's prolific Abitibi Gold Belt**, where similar surveys have been used to great success.

Benefits to Shareholders

- This **non-dilutive funding** will allow RGC to conduct this survey at a fraction of the cost.
- Builds upon 2024 airborne magnetic data, **further defining a >100 km² structural fold** near the Oregon Trail Structural Belt
- Survey aims to **streamline drill targeting** and accelerate new discoveries across the Bradley Peak Gold Camp.

Above: Map of the Seminoe Mountain region. A red ellipse indicates the approximate project area. **Below:** Example of helicopter-borne TEM survey equipment in flight.

APEX/BPEX NEXT STEPS 2026 PLAN

DOWN PLUNGE TARGETING

- Follow structural corridors below 400-500 m
- Focus on flexures, jogs, fold hinges

ADDITIONAL SHEAR ZONES

- BPEX step outs
- Testing emerging parallel shears from mapping + magnetics

NEW GEOPHYSICS & MODELLING

- VTEM and Magnetics
- Pathfinder Geochem Integration
- 3D Structural Updates

PORTFOLIO SUMMARY

SOUTH PASS CAMP

SIZE / SCALE

~32,000 ACRES

Mix of BLM, state lease claims, and patented / private ground located near the Wind River Mountains in west-central Wyoming

OPPORTUNITY

4 PROJECTS, 11 TARGETS

Golden Buffalo, Lewiston, Shield Carissa, Windy Flats

SAMPLING HIGHLIGHTS

- **160 g/t Au** (Golden Buffalo)
- **62 g/t Au, 8.1% Cu** (Lewiston)
- **18.9 g/t Au, 486 g/t Ag** (Shield-Carissa)
- **20 m trench** produced **500 oz Au** (Golden Buffalo)

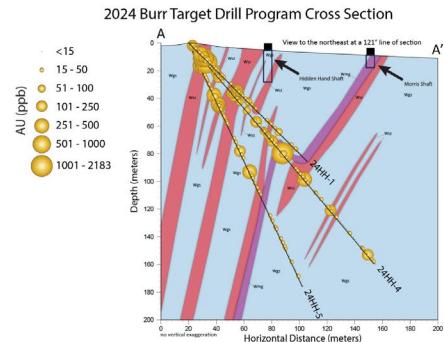
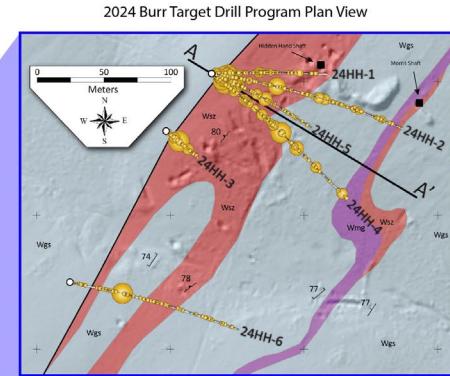
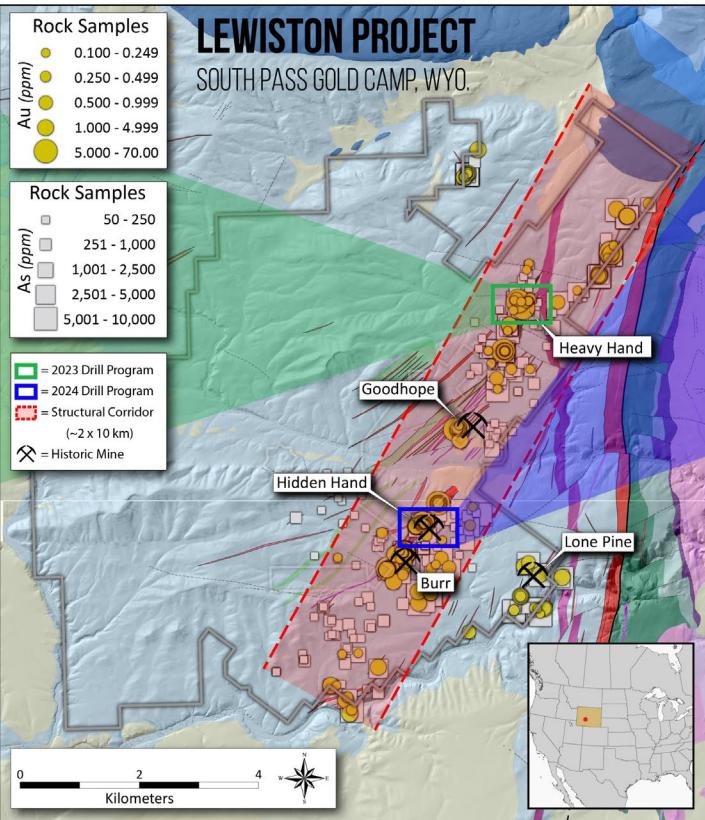
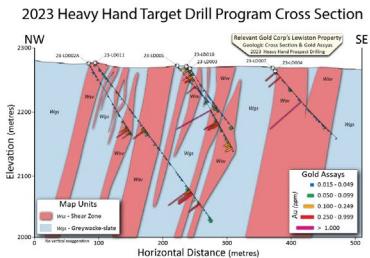
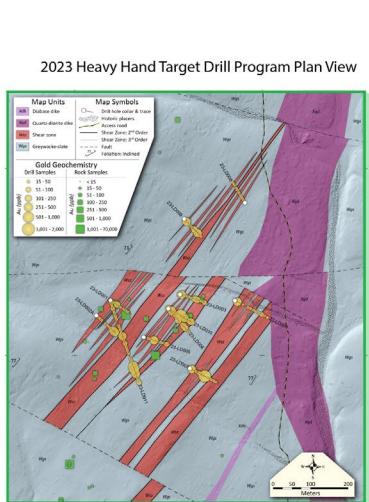
DRILLING HIGHLIGHTS*

Golden Buffalo (2022):

- **3,500 m** program
- Top intercept: **83.8 g/t Au** over 1 m
- **54%** of holes intersected gold mineralization

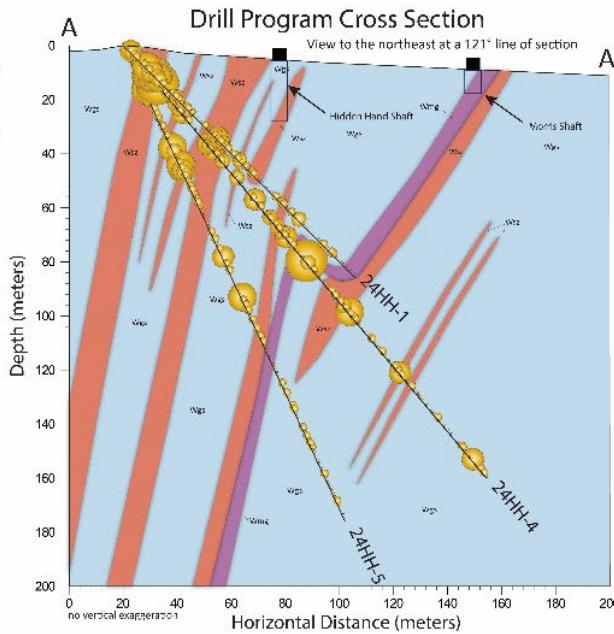
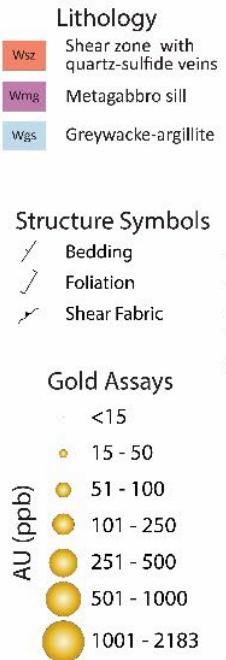
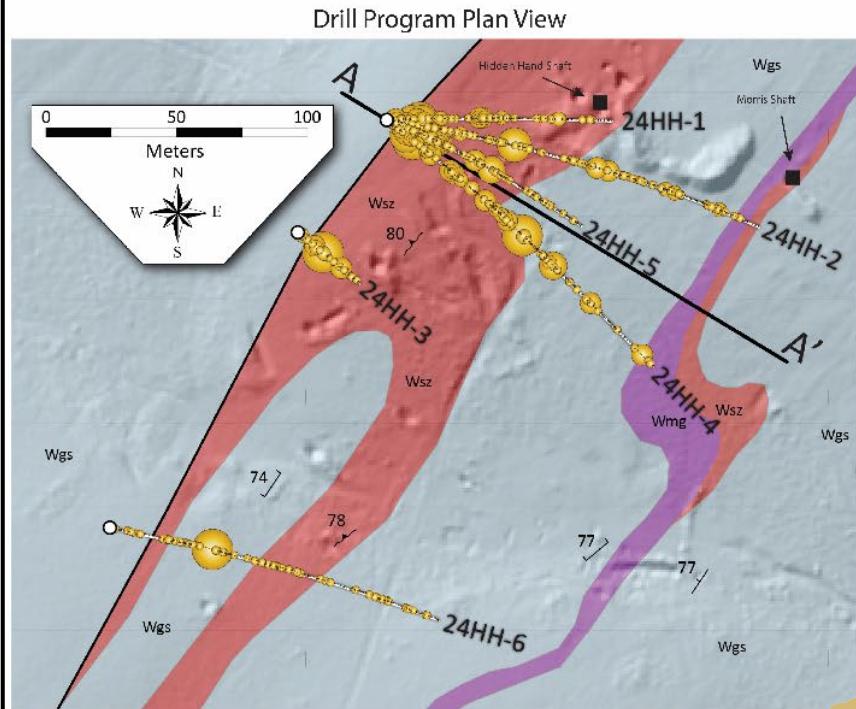
Lewiston (2023, 2024):

- **~3,200 m** (two programs)
- **16 of 17** holes intersected gold mineralization
- Top intercepts: **2.2 g/t Au** over 1.5 m, **0.35 g/t Au** over 10 m, **0.13 g/t Au** over 23 m






*All drill results reported in core length

UPCOMING CATALYSTS:

- **Advanced Geophysics, Mapping, and Sampling** to support **drill target refinement** in preparation for future follow-up drill programs at Lewiston and Golden Buffalo.
- Geologic Mapping, sampling, and target identification work at Shield-Carissa, Windy Flats

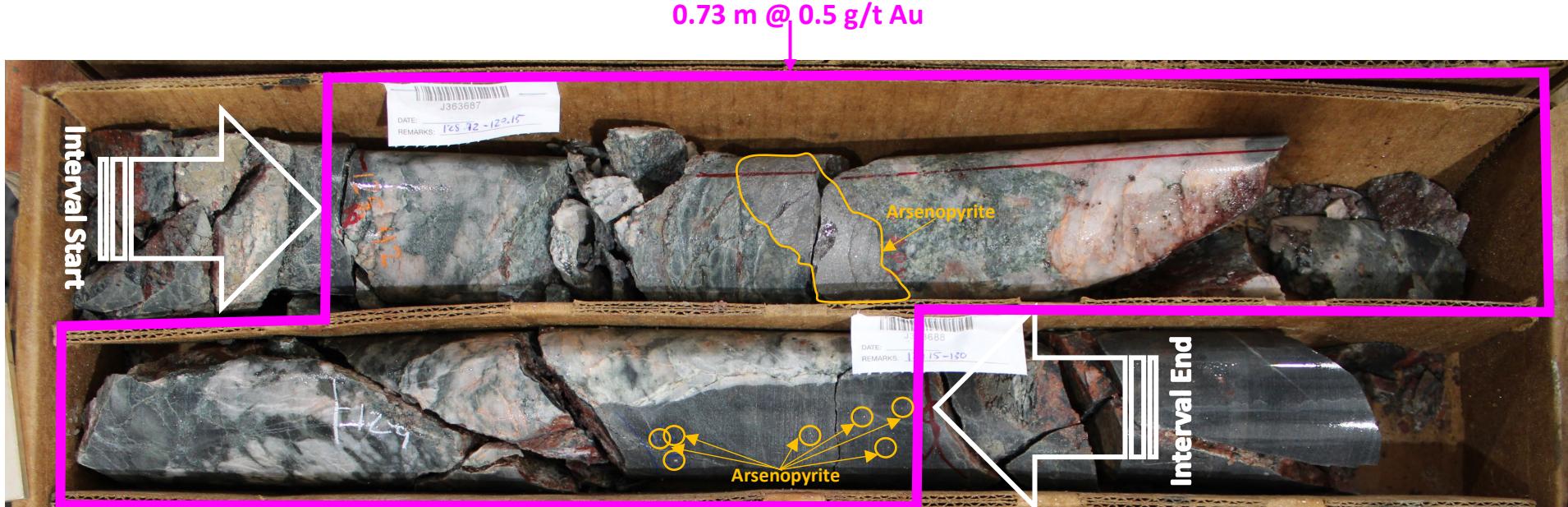



LEWISTON PROJECT DRILLING SUMMARY

2024 BURR TARGET DRILLING MAP & SECTION

BURR TARGET | 2024 DRILL PROGRAM OVERVIEW

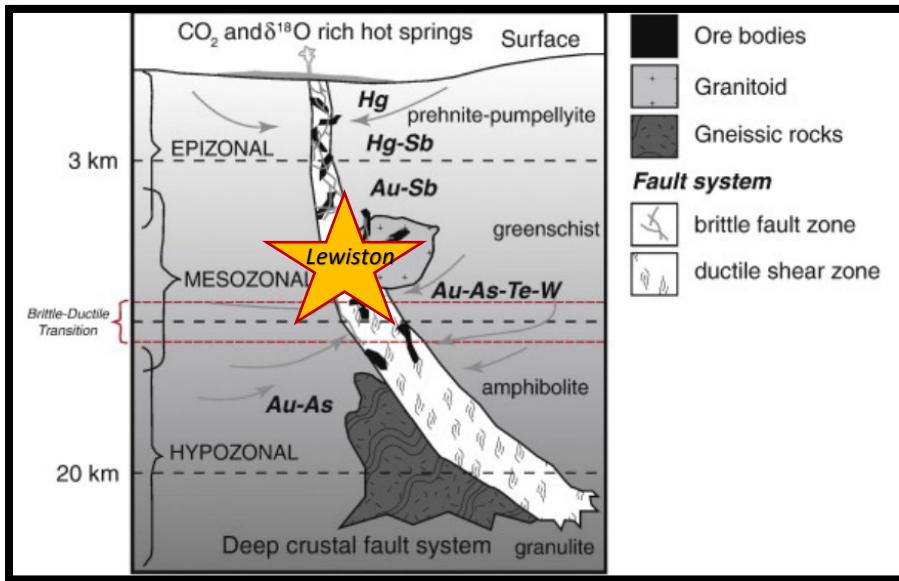
2024 BURR TARGET GOLD ASSAY RESULTS

Lewiston - Burr Target: Gold (Au) Assay Drill Intercepts								
Drill Hole	Sample ID	From (m)	To (m)	Interval (m)	Au (g/t)	Higher Grade Zones within Broader Intervals (Avg g/t over m)	Avg Grade (g/t)	Total Interval (m)
24HH-1	J364164	12.75	13.25	0.5	0.34			
	J364165	13.25	14.43	1.18	0.04			
	J364166	14.43	15	0.57	0.05			
	J364167	15	16	1	0.11			
	J364168	16	17	1	0.15			
	J364169	17	17.7	0.7	0.69			
	J364171	17.7	18.14	0.44	0.08			
24HH-2	J364172	18.14	19	0.86	0.28			
	J364173	19	20	1	0.06			
	J364291	9	10	1	0.07			
	J364292	10	10.9	0.9	0.06			
	J364293	10.9	11.7	0.8	0.10			
	J364294	11.7	12.25	0.55	0.03			
	J364295	12.25	13	0.75	0.06			
24HH-3	J364296	13	14	1	0.06			
	J364297	14	15	1	0.03			
	J364298	15	15.84	0.84	0.34			
	J364299	15.84	17	1.16	0.05			
	J364301	17	18	1	0.07			
	J364302	18	19.05	1.05	0.05			
	J364303	19.05	20	0.95	0.17			
J364364				75	76	1	0.83	
							0.8 g/t	1 m
24HH-4	J363958	10.97	13.11	2.14	0.13			
	J363959	13.11	14.5	1.39	0.07			
	J363961	14.5	17.2	2.7	0.05			
	J363962	17.2	19.05	1.85	1.29	1.3 g/t	1.85 m	0.33 g/t
	J363963	19.05	20.12	1.07	0.09			
	J363551	10	11	1	0.08			
	J363552	11	12	1	0.03			
24HH-5	J363553	12	12.87	0.87	0.10			
	J363554	12.87	14.1	1.23	0.24			
	J363555	14.1	15	0.9	0.87			
	J363556	15	16	1	0.04			
	J363557	16	17.27	1.27	0.05	0.4 g/t	6.3 m	
	J363558	17.27	17.8	0.53	0.04			
	J363559	17.8	18.37	0.57	0.07			
24HH-6	J363561	18.37	19.18	0.81	1.22			
	J363562	19.18	19.58	0.4	0.02			
	J363563	19.58	21	1.42	0.02			
	J363564	21	23	2	0.04			
	J363565	23	25	2	0.03			
	J363566	25	26	1	0.04			
	J363567	26	28	2	0.02			
24HH-7	J363568	28	29.11	1.11	0.06			
	J363569	29.11	29.8	0.69	0.06			
	J363571	29.8	30.25	0.45	0.04			
	J363572	30.25	30.88	0.63	<0.015			
	J363573	30.88	31.2	0.32	0.06			
	J363574	31.2	31.85	0.65	0.02			
	J363575	31.85	33	1.15	0.18			
24HH-8	J363656	103.2	104.7	1.5	2.20	2.2 g/t	1.5 m	0.13 g/t
	J363657	104.7	105.58	0.88	0.10			2.4 m
	J363687	128.42	129.15	0.73	0.49			0.5 g/t
	J363782	15.85	17.04	1.19	0.08			0.73 m
	J363783	17.04	18	0.96	0.48			
	J363784	18	18.59	0.59	0.33			
	J363785	18.59	19.64	1.05	0.17			
24HH-9	J363786	19.64	20.72	1.08	0.09			0.21 g/t
	J363809	40.75	41.76	1.01	0.49			4.9 m
	J363811	41.76	43	1.24	0.06			
	J363818	49.8	50.3	0.50	0.36			
	J363819	50.3	50.9	0.60	0.22			
	J363821	50.9	52	1.10	0.10			
	J363865	102.43	102.92	0.5	0.39			
24HH-10	J363061	69	69.8	0.8	1.80			0.17 g/t
	J363062	69.8	70.5	0.5	0.39			2.2 m
	J363063	70.5	71.2	0.5	0.39			
	J363064	71.2	72	0.5	0.39			
	J363065	72	72.7	0.5	0.39			
	J363066	72.7	73.4	0.5	0.39			
	J363067	73.4	74.1	0.5	0.39			
24HH-11	J363068	74.1	74.8	0.5	0.39			0.4 g/t
	J363069	74.8	75.5	0.5	0.39			0.5 m
	J363070	75.5	76.2	0.5	0.39			
	J363071	76.2	76.9	0.5	0.39			
	J363072	76.9	77.6	0.5	0.39			
	J363073	77.6	78.3	0.5	0.39			
	J363074	78.3	79	0.5	0.39			
24HH-12	J363075	79	79.7	0.5	0.39			0.8 g/t
	J363076	79.7	80.4	0.5	0.39			0.8 m
	J363077	80.4	81.1	0.5	0.39			
	J363078	81.1	81.8	0.5	0.39			
	J363079	81.8	82.5	0.5	0.39			
	J363080	82.5	83.2	0.5	0.39			
	J363081	83.2	83.9	0.5	0.39			
24HH-13	J363082	83.9	84.6	0.5	0.39			0.25 g/t
	J363083	84.6	85.3	0.5	0.39			2.25 m
	J363084	85.3	86	0.5	0.39			
	J363085	86	86.7	0.5	0.39			
	J363086	86.7	87.4	0.5	0.39			
	J363087	87.4	88.1	0.5	0.39			
	J363088	88.1	88.8	0.5	0.39			
24HH-14	J363089	88.8	89.5	0.5	0.39			0.4 g/t
	J363090	89.5	90.2	0.5	0.39			0.5 m
	J363091	90.2	90.9	0.5	0.39			
	J363092	90.9	91.6	0.5	0.39			
	J363093	91.6	92.3	0.5	0.39			
	J363094	92.3	93	0.5	0.39			
	J363095	93	93.7	0.5	0.39			
24HH-15	J363096	93.7	94.4	0.5	0.39			0.17 g/t
	J363097	94.4	95.1	0.5	0.39			2.2 m
	J363098	95.1	95.8	0.5	0.39			
	J363099	95.8	96.5	0.5	0.39			
	J363100	96.5	97.2	0.5	0.39			
	J363101	97.2	97.9	0.5	0.39			
	J363102	97.9	98.6	0.5	0.39			
24HH-16	J363103	98.6	99.3	0.5	0.39			0.17 g/t
	J363104	99.3	100	0.5	0.39			2.2 m
	J363105	100	100.7	0.5	0.39			
	J363106	100.7	101.4	0.5	0.39			
	J363107	101.4	102.1	0.5	0.39			
	J363108	102.1	102.8	0.5	0.39			
	J363109	102.8	103.5	0.5	0.39			
24HH-17	J363110	103.5	104.2	0.5	0.39			0.4 g/t
	J363111	104.2	104.9	0.5	0.39			0.5 m
	J363112	104.9	105.6	0.5	0.39			
	J363113	105.6	106.3	0.5	0.39			
	J363114	106.3	107	0.5	0.39			
	J363115	107	107.7	0.5	0.39			
	J363116	107.7	108.4	0.5	0.39			
24HH-18	J363117	108.4	109.1	0.5	0.39			0.17 g/t
	J363118	109.1	109.8	0.5	0.39			2.2 m
	J363119	109.8	110.5	0.5	0.39			
	J363120	110.5	111.2	0.5	0.39			
	J363121	111.2	111.9	0.5	0.39			
	J363122	111.9	112.6	0.5	0.39			
	J363123	112.6	113.3	0.5	0.39			
24HH-19	J363124	113.3	114	0.5	0.39			0.4 g/t
	J363125	114	114.7	0.5	0.39			0.5 m
	J363126	114.7	115.4	0.5	0.39			
	J363127	115.4	116.1	0.5	0.39			
	J363128	116.1	116.8	0.5	0.39			
	J363129	116.8	117.5	0.5	0.39			
	J363130	117.5	118.2	0.5	0.39			
24HH-20	J363131	118.2	118.9	0.5	0.39			0.17 g/t
	J363132	118.9	119.6	0.5	0.39			2.2 m
	J363133	119.6	120.3	0.5	0.39			
	J363134	120.3	121	0.5	0.39			
	J363135	121	121.7	0.5	0.39			
	J363136	121.7	122.4	0.5	0.39			
	J363137	122.4	123.1	0.5	0.39			
24HH-21	J363138	123.1	123.8	0.5	0.39			0.4 g/t
	J363139	123.8	124.5	0.5	0.39			0.5 m
	J363140	124.5	125.2	0.5	0.39			
	J363141	125.2	125.9	0.5	0.39			
	J363142	125.9	126.6	0.5	0.39			
	J363143	126.6	127.3	0.5	0.39			
	J363144	127.3	128	0.5	0.39			
24HH-22	J363145	128	128.7	0.5	0.39			0.17 g/t
	J363146	128.7	129.4	0.5	0.39			2.2 m
	J363147	129.4	130.1	0.5	0.39			
	J363148	130.1	130.8	0.5	0.39			
	J363149	130.8	131.5	0.5	0.39			
	J363150	131.5	132.2	0.5	0.39			
	J363151	132.2	132.9	0.5	0.39			
24HH-23	J363152	132.9	133.6	0.5	0.39			0.4 g/t
	J363153	133.6	134.3	0.5	0.39			0.5 m
	J363154	134.3	135	0.5	0.39			
	J363155	135	135.7	0.5	0.39			



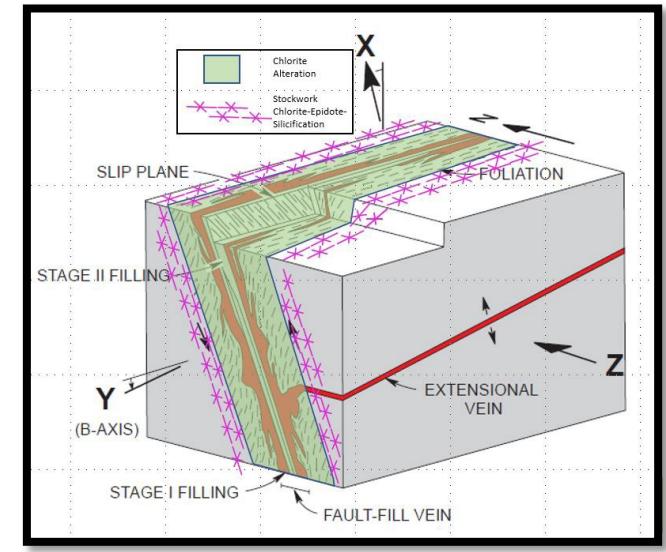
HOLE 24-HH004 – 23m of 0.13 g/t Au (10 m – 29.8 m)

HOLE 24-HH004 – 0.73 m @ 0.5 gpt Au (128.42 – 129.2 m)



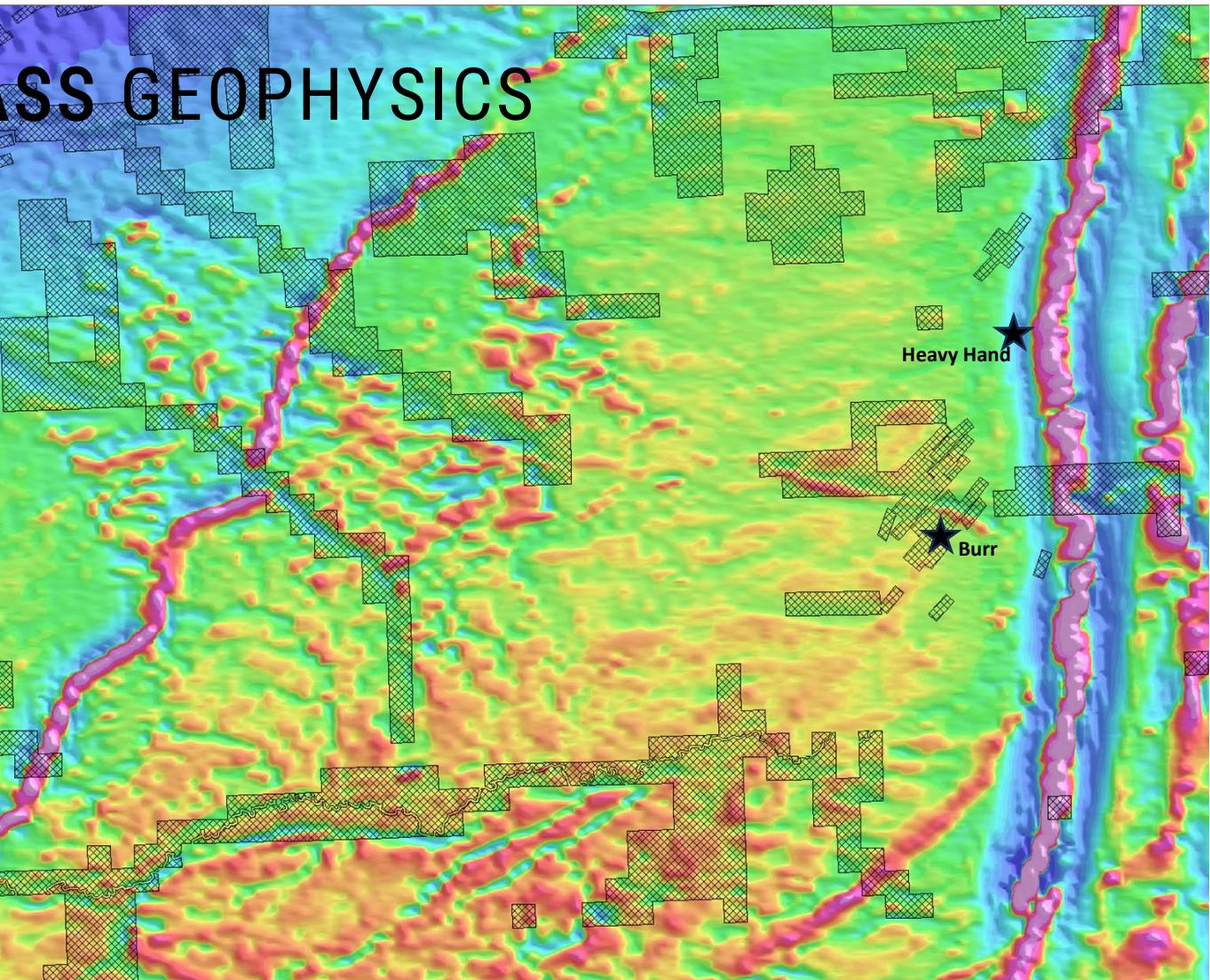
MINERALIZATION & ALTERATION MODEL

Trace Element Geochemistry


- ◆ Lewiston is in the sweet spot for an orogenic gold system
- ◆ As-Ag-Bi-Sb-Te-W
- ◆ > 50% positive correlation to gold in RGC geochem

Goldfarb & Groves, 2015

Alteration Assemblage (Abitibi-style)


- ◆ **Primary:** Sericite-Pyrite-Arsenopyrite
- ◆ **Proximal:** Silicification-Chlorite/Epidote
- ◆ **Distal:** Decrease in Chlorite with stock-work silicification

Robert, 1990

SOUTH PASS GEOPHYSICS

LEWISTON ROCK CHIP SAMPLING RESULTS

25.42 g/t Au + 12.7% Cu +
2,203 g/t Ag + 4.3% Pb

Lewiston: Highlighted Sample Results

Sample ID	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)
C0413739	25.42	7.42	1684	170
C0413727	16.78	1.98	78.4	152.1
C0413847	13.10	0.59	41.9	5.3
C0413578	12.26	0.79	28	24.8
C0413590	10.33	0.84	167.9	2.2
C0413814	10.32	3.35	280.3	1727
C0413594	8.04	603	64360	2549
C0413891	6.13	0.55	80	7.9
C0413591	5.86	1.45	1305	356.7
C0413697	5.55	0.67	378.2	23.4
C0413911	5.14	0.07	44.7	9.3
C0413718	4.59 >100	>10000		679.3
C0413870	4.15	0.44	2494	16.2
C0413501	4.10	0.46	44.3	21.3
C0413699	4.07	0.3	158.5	4.6
C0413816	3.77	2.83	199.2	1460
C0413560	3.23	8.15	1513	7905
C0413804	2.42	>100	>10000	2243
C0413719	2.37	>100	>10000	3471
C0413611	1.66	2203	127150	43400
C0413738	1.24	1.41	1431	52.7
C0413612	0.18	9.91	15730	890.6
C0413717	0.36	13.02	3114.2	>10000

Extended the Burr
mineralized trend by
>2.5 km

Sampling Legend

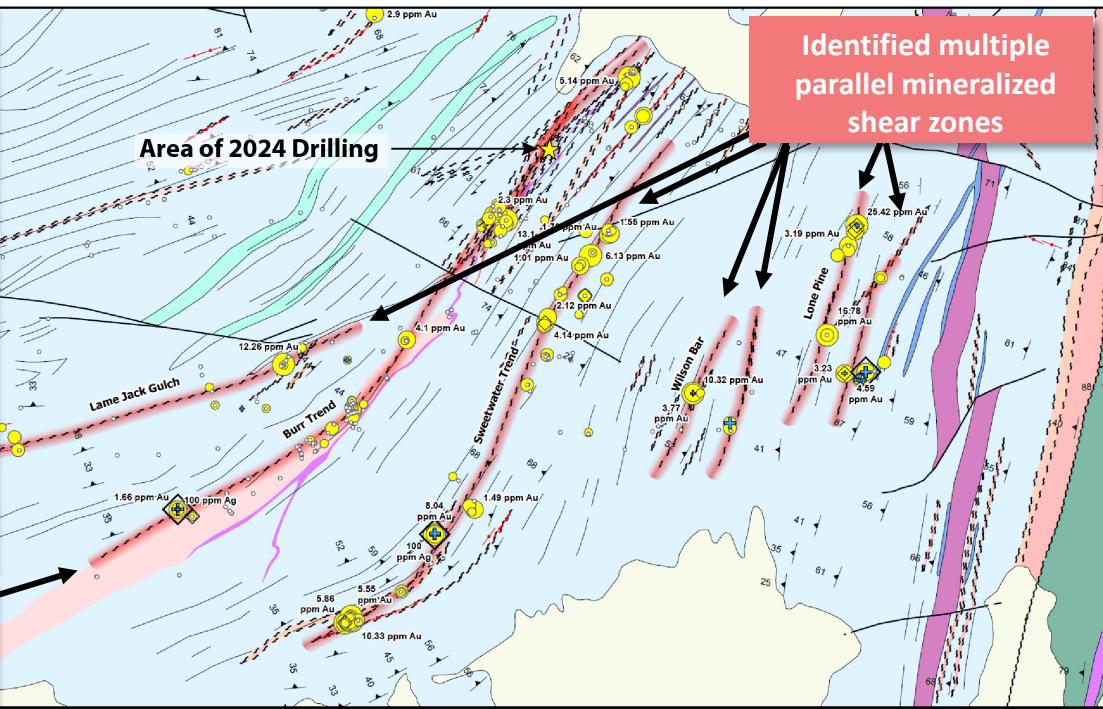
Gold Assays
Au (ppm)

- 0.01 - 0.05
- 0.06 - 0.10
- 0.11 - 1.00
- 1.01 - 5.00
- 5.01 - 25.42

Silver Assays
Ag (ppm)

- 0.02 - 2.00
- 2.01 - 16.00
- 16.01 - 100.00

Copper Assays
Cu (ppm)


- 2 - 1000
- 1001 - 5000
- 5001 - 10000

Project Location

Identified multiple
parallel mineralized
shear zones

Area of 2024 Drilling

Geologic Legend

Cenozoic

Tsp - South Pass Formation
(Miocene-Pliocene)

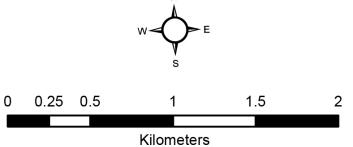
Proterozoic

Xdb - Diabase dike
Xqd - Quartz-diorite dike

Sheared Rocks

Wszm
Wszu
Wszq
Wszs - Shear Zone: Sericite-dominant
Wszc - Shear Zone: Chlorite-dominant

Intrusive Rocks

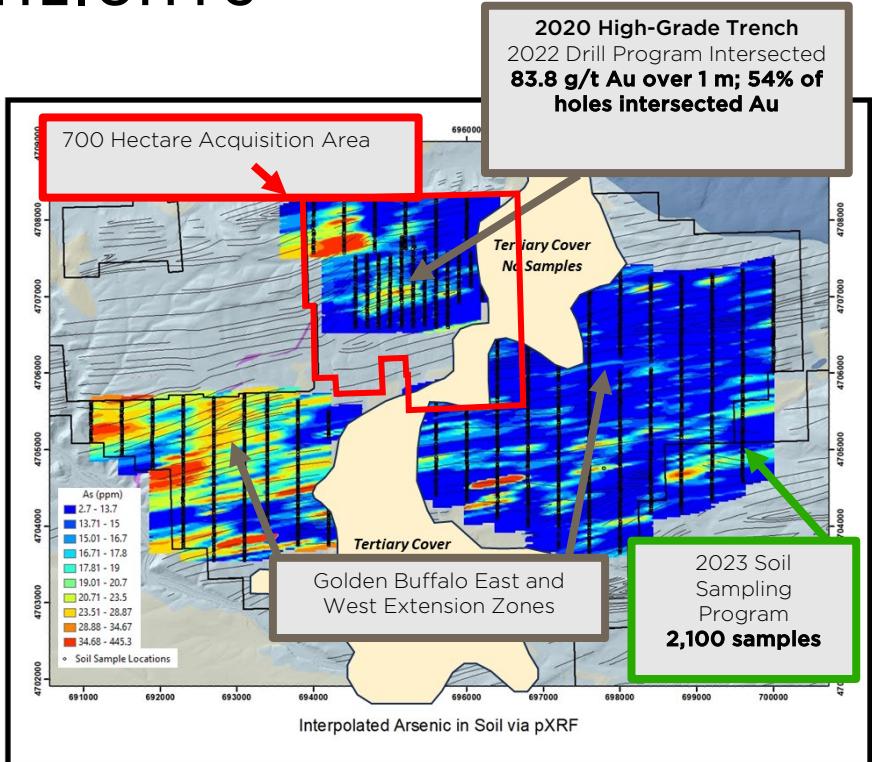

Wmg - Metagabbro sills

Miners Delight Formation

Wmm - Mixed member; wacke-schist-volcanics conglomerate
Wgs - Greywacke-slate and its schistose metamorphic equivalents
Wmva - Mafic metavolcanic rocks

Planar Features

- Quartz Vein
- Shear Fabric: Inclined
- Foliation: Inclined
- Structural Formlines
- Foliation: Vertical
- Bedding: Inclined
- Mineralized Trend



GOLDEN BUFFALO HIGHLIGHTS

PROJECT OVERVIEW

- **9,600** acres (3,884 ha) footprint
- **2** high-grade targets defined
- 2020 trench produced ~500 oz Au (pictured left)
- **2022 Drill Program:**
 - **3,500 m** drilled at Golden Buffalo target
 - Cut gold in **54%** holes
 - Top interval: **83.8 g/t Au over 1 m**
- Golden Buffalo Shear Zone (GBSZ) extended to **> 2 km** of strike
- **160 g/t Au** (RGC rock chip sample)
- 2023 soil survey defined 3.5 km² geochemical anomaly GBSZ strike extension

IN THE PAST 18 MONTHS:

- ✓ Closed a \$2.9M financing and **welcomed Kinross Gold as 9.9% Strategic**
- ✓ Conducted widespread geologic mapping and sampling at Bradley Peak
 - Results highlighted by **46.8 g/t Au, 7.8% Cu, 2% Zn** (rock chips)
- ✓ Doubled our land position at Bradley Peak to ~10,800 acres
- ✓ Permitted and Drilled 1,026 m at the Burr Target (Lewiston)
 - Results highlighted by **2.2 g/t Au over 1.5 m, and 23 m averaging 0.13 g/t Au.** (core length)
- ✓ Closed an oversubscribed \$8.5M financing with **Kinross Gold and Mr. William Bollinger each increasing ownership to 19.9%**
- ✓ Permitted and drilled a **5,102 m drill program** at our Bradley Peak Apex Target; proven Au system
- ✓ Secured a **\$226K grant** from State of Wyoming to support airborne geophysics at Bradley Peak
- ✓ Named Sarah Weber as Independent Board Chair
- ✓ Brought in **\$2.89M** through execution of warrants by **Kinross Gold, William Bollinger, and Management**
- ✓ Extended Burr Target 2.5Km highlighted by **25.4 g/t Au, 2,203 g/t Ag, 12.7% Cu, and 4.3% Pb**

PROOF OF CONCEPT

Orogenic Gold Checklist; RGC district-scale exploration checks all the boxes

	CRITERIA	DESCRIPTION
✓	Structural Setting	<ul style="list-style-type: none">Major east-west Archean fault structures cutting across WYMineralized secondary shear zonesBrittle-ductile transitionRheologic contrastsComplex re-folded folds
✓	Host Rock	<ul style="list-style-type: none">Amphibolites & greenstonesGreywackesCarbonate facies iron formation
✓	Alteration	<ul style="list-style-type: none">Chlorite, Carbonate, Sericite, Epidote, Sulfidation, Silica
✓	Geochemistry	<ul style="list-style-type: none">Au, Ag, As, Bi, Cu, Sb, Pb, Zn
✓	High-Grade Mineralization	<ul style="list-style-type: none">Archean Orogenic gold style mineralization systemsHigh-grade and visible orogenic gold proven (168 g/t Au)
✓	Land Position	<ul style="list-style-type: none">5 district-scale assets across 150 km Archean beltBig enough to host the largest known orogenic type depositsWell established infrastructure, access, water, and power
✓	Scalable Opportunity	<ul style="list-style-type: none">Connection to Abitibi during gold mineralization (2.65 ba)Multiple high-grade targets with Abitibi-scale potential
✓	Permitting	<ul style="list-style-type: none">Streamlined State and Federal permitting pathwayMultiple exploration permits in handWyoming has deep roots in mining and natural resources

WHY INVEST?

DISTRICT-SCALE CONTROL IN A TIER 1 JURISDICTION

>50K Acres covering Archean belt with multiple camp-scale systems under single operator control

HIGH-GRADE OROGENIC GOLD PROVEN AT DEPTH

Multiple drill-tested targets confirm high-grade gold continuity and system fertility

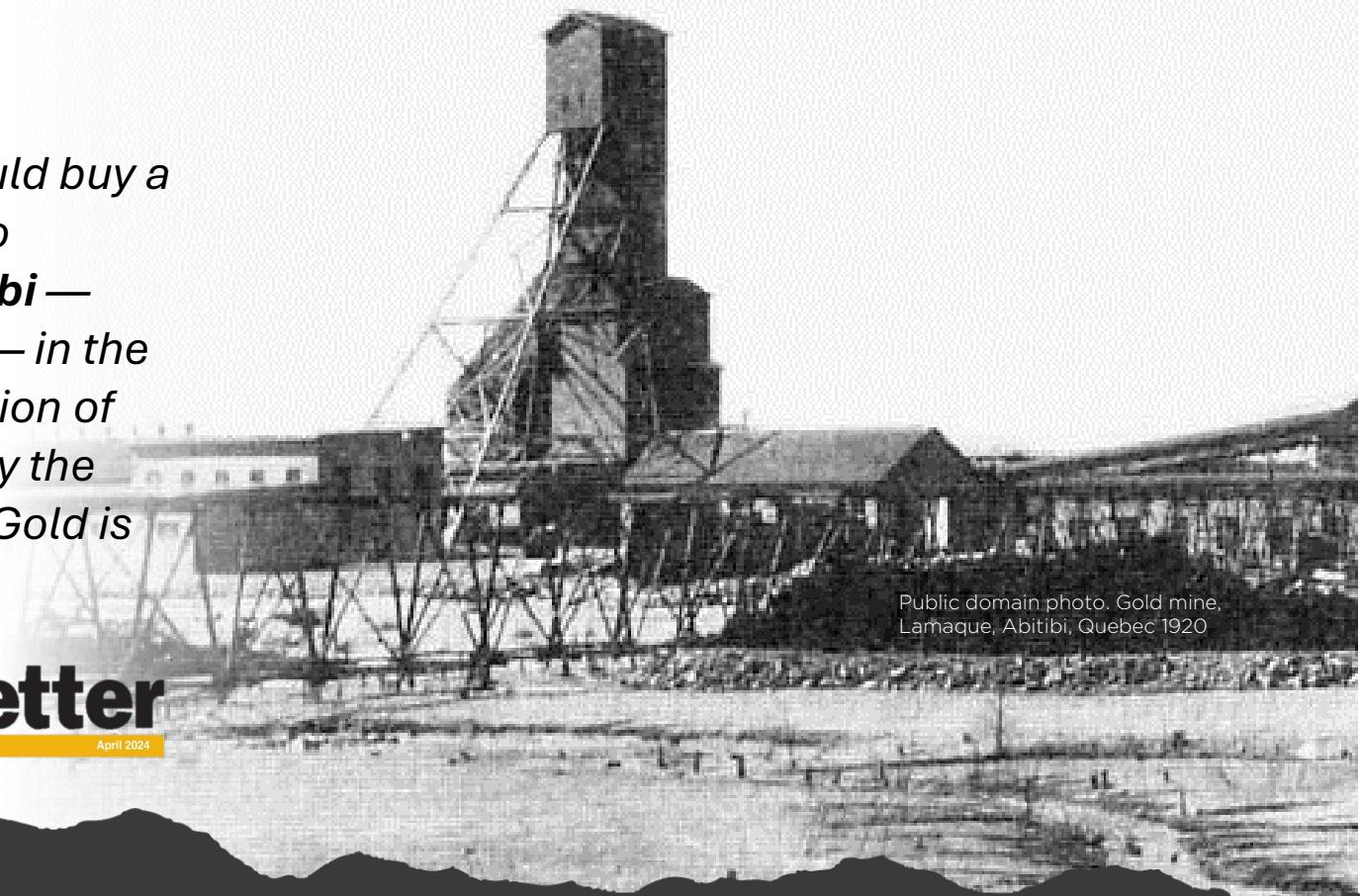
TIGHTLY HELD, ALIGNED CAPITAL STRUCTURE

~119M shares outstanding with meaningful ownership by Kinross, Bollinger

DISCOVERY UPSIDE + EXECUTION ENGINE:

Pipeline of 17 high-grade targets supported by integrated exploration platform through Big Rock Exploration

Relevant Gold: A de-risked, district-scale gold opportunity with proven systems, aligned capital, and a clear path to discovery.



*“Now imagine if you could buy a ticket on the potential to **discover the next Abitibi** — virtually the entire belt — in the mining-friendly jurisdiction of **Wyoming**. That’s exactly the potential that Relevant Gold is offering investors.”*

Gold Newsletter

Vol. LI

April 2024

Public domain photo. Gold mine, Lamaque, Abitibi, Quebec 1920

RELEVANT GOLD

| CORPORATE PRESENTATION

RELEVANT GOLD
TSXV:RGC | OTCQX:RGCCF

IF YOU COULD GO BACK AND INVEST IN
THE ABITIBI BEFORE THE GOLD RUSH...

HOW MUCH
WOULD YOU INVEST?

Public domain photo. Gold mine,
Lamaque, Abitibi, Quebec 1920

JOIN US FOR THE NEXT BIG DISCOVERY

WWW.RELEVANTGOLDCORP.COM

@RELEVANTGOLDCORP

FOR QUESTIONS & INFORMATION, PLEASE CONTACT:

investorrelations@relevantgoldcorp.com
+1-763-760-4886

RELEVANT GOLD
TSXV:RGC | OTCQB:RGCCF